Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Funct Integr Genomics ; 24(2): 62, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38514486

RESUMO

Long-wave sensitive (LWS) is a G protein-coupled receptor expressed in the retina, and zebrafish is a better model organism for studying vision, but the role of LWS1 in vision-guided behavior of larvae fish has rarely been reported. In this study, we found that zebrafish lws1 and lws2 are tandemly replicated genes, both with six exons, with lws1 being more evolutionarily conserved. The presence of Y277F in the amino acid sequence of lws2 may have contributed to the shift of λmax to green light. We established a lws1 knockout zebrafish model using CRISPR/Cas9 technology. Lws1-/- larvae showed significantly higher levels of feeding and appetite gene (agrp) expression than WT, and significantly lower levels of anorexia gene (pomc, cart) expression. In addition, green light gene compensation was observed in lws1-/- larvae with significantly increased expression levels of rh2-1. The light-dark movement test showed that lws1-/- larvae were more active under light-dark transitions or vibrational stimuli, and the expression of phototransduction-related genes was significantly up-regulated. This study reveals the important role of lws1 gene in the regulation of vision-guided behavior in larvae.


Assuntos
Opsinas dos Cones , Peixe-Zebra , Animais , Sequência de Aminoácidos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Opsinas dos Cones/genética , Comportamento Alimentar , Visão Ocular/genética
2.
J Mol Evol ; 92(2): 93-103, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38416218

RESUMO

Ecological and evolutionary transitions offer an excellent opportunity to examine the molecular basis of adaptation. Fishes of the order Beloniformes include needlefishes, flyingfishes, halfbeaks, and allies, and comprise over 200 species occupying a wide array of habitats-from the marine epipelagic zone to tropical rainforest rivers. These fishes also exhibit a diversity of diets, including piscivory, herbivory, and zooplanktivory. We investigated how diet and habitat affected the molecular evolution of cone opsins, which play a key role in bright light and colour vision and are tightly linked to ecology and life history. We analyzed a targeted-capture dataset to reconstruct the evolutionary history of beloniforms and assemble cone opsin sequences. We implemented codon-based clade models of evolution to examine how molecular evolution was affected by habitat and diet. We found high levels of positive selection in medium- and long-wavelength beloniform opsins, with piscivores showing increased positive selection in medium-wavelength opsins and zooplanktivores showing increased positive selection in long-wavelength opsins. In contrast, short-wavelength opsins showed purifying selection. While marine/freshwater habitat transitions have an effect on opsin molecular evolution, we found that diet plays a more important role. Our study suggests that evolutionary transitions along ecological axes produce complex adaptive interactions that affect patterns of selection on genes that underlie vision.


Assuntos
Opsinas dos Cones , Animais , Opsinas dos Cones/genética , Filogenia , Opsinas/genética , Peixes/genética , Evolução Molecular
3.
JCI Insight ; 9(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38060327

RESUMO

An arginine to cysteine substitution at amino acid position 203 (C203R) is the most common missense mutation in human cone opsin. Linked to color blindness and blue cone monochromacy (BCM), C203 is involved in a crucial disulfide bond required for proper folding. It has previously been postulated that expression of mutant C203R cone opsin exerts a toxic effect on cone photoreceptors, similar to some well-characterized missense mutations in rhodopsin that lead to protein misfolding. In this study, we generated and characterized a BCM mouse model carrying the equivalent C203R mutation (Opn1mwC198R Opn1sw-/-) to investigate the disease mechanism and develop a gene therapy approach for this disorder. Untreated Opn1mwC198R Opn1sw-/- cones phenocopied affected cones in human patients with the equivalent mutation, exhibiting shortened or absent cone outer segments and loss of function. We determined that gene augmentation targeting cones specifically yielded robust rescue of cone function and structure when Opn1mwC198R Opn1sw-/- mice were treated at early ages. Importantly, treated cones displayed elaborated outer segments and replenished expression of crucial cone phototransduction proteins. Interestingly, we were unable to detect OPN1MWC198R mutant opsin at any age. We believe this is the first proof-of-concept study exploring the efficacy of gene therapy in BCM associated with a C203R mutation.


Assuntos
Defeitos da Visão Cromática , Opsinas dos Cones , Células Fotorreceptoras Retinianas Cones , Humanos , Animais , Camundongos , Células Fotorreceptoras Retinianas Cones/metabolismo , Mutação de Sentido Incorreto , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Rodopsina/genética
4.
Evol Dev ; 26(1): e12465, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38041513

RESUMO

In many organisms, sensory abilities develop and evolve according to the changing demands of navigating, foraging, and communication across different environments and life stages. Teleost fish inhabit heterogeneous light environments and exhibit a large diversity in visual system properties among species. Cichlids are a classic example of this diversity; visual system variation is generated by different tuning mechanisms that involve both genetic factors and phenotypic plasticity. Here, we document the developmental progression of visual pigment gene expression in Lake Victoria cichlids and test if these patterns are influenced by variation in light conditions. We reared two sister species of Pundamilia to adulthood in two distinct visual conditions that resemble the light environments that they naturally inhabit in Lake Victoria. We also included interspecific first-generation hybrids. We focused on the four opsins that are expressed in Pundamilia adults (using real-time quantitative polymerase chain reaction (RT-qPCR)) (SWS2B, SWS2A, RH2A, and LWS) at 17 time points. We find that opsin expression profiles progress from shorter-wavelength sensitive opsins to longer-wavelength sensitive opsins with increasing age, in both species and their hybrids. The developmental trajectories of opsin expression also responded plastically to the visual conditions. Developmental and environmental plasticity in opsin expression may provide an important stepping stone in the evolution of cichlid visual system diversity.


Assuntos
Ciclídeos , Opsinas dos Cones , Animais , Opsinas/genética , Opsinas/metabolismo , Ciclídeos/genética , Lagos , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Expressão Gênica , Filogenia
5.
Dokl Biol Sci ; 510(1): 167-171, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37582993

RESUMO

The study explored the potential of an animal opsin nonselectively expressed in various neuronal elements of the degenerative retina to restore the impaired visual function. A knockout murine model of inherited retinal dystrophy was used. Mice were injected intravitreally with either a virus carrying the gene of short-wavelength cone opsin associated with a reporter fluorescent protein or a control virus carrying the sequence of a modified fluorescent protein with enhanced membrane tropism. Viral transduction induced pronounced opsin expression in ganglion, bipolar, and horizontal retinal neurons. Behavioral testing included the visually guided task in the trapezoid Morris water maze and showed a partial recovery of the learning ability in the mice whose retinas had been transduced with cone opsin.


Assuntos
Opsinas dos Cones , Degeneração Retiniana , Camundongos , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Retina , Opsinas/metabolismo , Camundongos Knockout
6.
Fish Physiol Biochem ; 49(5): 801-813, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37495865

RESUMO

Color vision is mediated by the expression of different major visual pigment proteins (opsins) on retinal photoreceptors. Vertebrates have four classes of cone opsins that are most sensitive to different wavelengths of light: short wavelength sensitive 1 (SWS1), short wavelength sensitive 2 (SWS2), medium wavelength sensitive (RH2), and long wavelength sensitive (LWS). UV wavelengths play important roles in foraging and communication. However, direct evidence provide links between sws1 and first feeding is lacking. Here, CRISPR/Cas9 technology was performed to generate mutant zebrafish lines with sws1 deletion. sws1 mutant zebrafish larvae exhibited decreased sws1, rh2-2, and lws1 expression, and increased rod gene (rho and gnat1) expression. Furthermore, the sws1-deficient larvae exhibited significantly reduced food intake, and the orexigenic genes npy and agrp signaling were upregulated at 6 days postfertilization (dpf). The transcription expression of sws1 and rh2-3 genes decreased in sws1-/- adults compared to wild type. Surprisingly, the results of feeding at the adult stage were not the same with larvae. sws1 deficiency did not affect food intake and appetite gene expression at adult stages. These results reveal a role for sws1 in normal cone development and first feeding in larval zebrafish.


Assuntos
Opsinas dos Cones , Peixe-Zebra , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Opsinas/genética , Opsinas/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Cones , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
7.
Vision Res ; 206: 108204, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36868011

RESUMO

Vertebrates have four visual cone opsin classes that mediate sensitivity from ultraviolet to red wavelengths of light. The rhodopsin-like 2 (RH2) opsin is sensitive to the central mostly green part of the spectrum. While lost in some terrestrial vertebrates (mammals), the RH2 opsin gene has proliferated during the evolution of teleost fishes. Here, we investigated the genomes of 132 extant teleosts and found between zero and eight RH2 gene copies per species. The RH2 gene shows a dynamic evolutionary history with repeated gene duplications, gene losses, and gene conversions affecting entire orders, families, and species. At least four ancestral duplications provided the substrate for today's RH2 diversity, with duplications occurring in the common ancestors of Clupeocephala (twice), Neoteleostei, and likely Acanthopterygii as well. Despite these evolutionary dynamics, we identified conserved RH2 synteny in two main gene clusters; the slc6A13/synpr cluster is highly conserved within Percomorpha and also present across most teleosts, including Otomorpha, Euteleostei and in parts in tarpons (Elopomorpha), and the mutSH5 cluster, which is specific for Otomorpha. When comparing the number of visual opsin genes (SWS1, SWS2, RH2, LWS, and total cone opsins) with habitat depth, we found that deeper-dwelling species had less (or none) long-wavelength-sensitive opsins. Using retinal/eye transcriptomes in a phylogenetic representative dataset of 32 species, we show that if present in the genome, RH2 is expressed in most fishes except for some species within the tarpons, characins, and gobies (and Osteoglossomorpha and some other characin species have lost the gene). Those species instead express a green-shifted long-wavelength-sensitive LWS opsin. Our study applies modern genomic and transcriptomic tools within a comparative framework to elucidate the evolutionary history of the visual sensory system in teleost fishes.


Assuntos
Opsinas dos Cones , Rodopsina , Animais , Rodopsina/genética , Filogenia , Peixes/genética , Opsinas/genética , Opsinas dos Cones/genética , Mamíferos
8.
Proc Biol Sci ; 289(1986): 20221855, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36321490

RESUMO

Fish often change their habitat and trophic preferences during development. Dramatic functional differences between embryos, larvae, juveniles and adults also concern sensory systems, including vision. Here, we focus on the photoreceptors (rod and cone cells) in the retina and their gene expression profiles during development. Using comparative transcriptomics on 63 species, belonging to 23 actinopterygian orders, we report general developmental patterns of opsin expression, mostly suggesting an increased importance of the rod opsin (RH1) gene and the long-wavelength-sensitive cone opsin, and a decreasing importance of the shorter wavelength-sensitive cone opsin throughout development. Furthermore, we investigate in detail ontogenetic changes in 14 selected species (from Polypteriformes, Acipenseriformes, Cypriniformes, Aulopiformes and Cichliformes), and we report examples of expanded cone opsin repertoires, cone opsin switches (mostly within RH2) and increasing rod : cone ratio as evidenced by the opsin and phototransduction cascade genes. Our findings provide molecular support for developmental stage-specific visual palettes of ray-finned fishes and shifts between, which most likely arose in response to ecological, behavioural and physiological factors.


Assuntos
Opsinas dos Cones , Opsinas , Animais , Opsinas/genética , Opsinas de Bastonetes/genética , Opsinas dos Cones/genética , Peixes/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Expressão Gênica
9.
Mol Vis ; 28: 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400991

RESUMO

Purpose: Blue cone monochromacy (BCM) is an X-linked retinopathy caused by mutations in the red and green cone opsin genes. The aim of this study was to establish the clinical, genetic, and electrophysiological characteristics of a specific form of BCM. Methods: Patients harboring mutations in the OPN1LW/OPN1MW genes underwent a full clinical examination, including ocular examination, color vision, full-field electroretinography, color fundus and autofluorescence photography, and optical coherence tomography. Genetic analysis was performed using whole-exome sequencing, duplex PCR, PCR/restriction fragment length polymorphism, and Sanger sequencing. IBM SPSS Statistics v. 21.0 was used for the data analysis. Results: Twenty-five patients harboring various haplotypes in exon 3 of the OPN1LW/OPN1MW genes were recruited. They showed a milder incomplete phenotype of BCM than the typical BCM control group. They presented significantly better visual acuity (logarithm of the minimum angle of resolution [logMAR] 0.48 ± 0.26 vs. 1.10 ± 0.54; p < 0.0001) and a highly myopic refraction (-7.81 ± 5.81 D vs. -4.78 ± 5.27 D; p = 0.0222) compared with the BCM control group. The study group had higher 30-Hz cone flicker responses (28.60 ± 15.02 µv; n = 24), whereas the BCM group had none (0.66 ± 2.12 µv; n = 21; p < 0.0001). The Lanthony 15-HUE desaturated test was variable for the exon 3 haplotype group, with a tendency toward the deutan-protan axis. Conclusions: The present study included genetic and clinical data from the largest cohort of patients with exon 3 haplotypes that were previously shown to cause missplicing of the OPN1LW and OPN1MW genes. Analysis of the clinical data revealed better best-corrected visual acuity, more severe myopia, and higher 30-Hz cone flicker responses in the patients with exon 3 haplotypes than in those with typical BCM.


Assuntos
Defeitos da Visão Cromática , Opsinas dos Cones , Miopia , Defeitos da Visão Cromática/genética , Opsinas dos Cones/genética , Eletrorretinografia , Haplótipos , Humanos , Miopia/genética , Linhagem , Fenótipo
10.
J Exp Biol ; 225(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35244167

RESUMO

Vision is used by animals to find food and mates, avoid predators, defend resources and navigate through complex habitats. Behavioural experiments are essential for understanding animals' perception but are often challenging and time-consuming; therefore, using species that can be trained easily for complex tasks is advantageous. Picasso triggerfish, Rhinecanthus aculeatus, have been used in many behavioural studies investigating vision and navigation. However, little is known about the molecular and anatomical basis of their visual system. We addressed this knowledge gap here and behaviourally tested achromatic and chromatic acuity. In terms of visual opsins, R. aculeatus possessed one rod opsin gene (RH1) and at least nine cone opsins: one violet-sensitive SWS2B gene, seven duplicates of the blue-green-sensitive RH2 gene (RH2A, RH2B, RH2C1-5) and one red-sensitive LWS gene. However, only five cone opsins were expressed: SWS2B expression was consistent, while RH2A, RH2C-1 and RH2C-2 expression varied depending on whether fish were sampled from the field or aquaria. Levels of LWS expression were very low. Using fluorescence in situ hybridisation, we found SWS2B was expressed exclusively in single cones, whereas RH2A and RH2Cs were expressed in opposite double cone members. Anatomical resolution estimated from ganglion cell densities was 6.8 cycles per degree (cpd), which was significantly higher than values obtained from behavioural testing for black-and-white achromatic stimuli (3.9 cpd) and chromatic stimuli (1.7-1.8 cpd). These measures were twice as high as previously reported. This detailed information on their visual system will help inform future studies with this emerging focal species.


Assuntos
Opsinas dos Cones , Tetraodontiformes , Animais , Opsinas dos Cones/genética , Opsinas dos Cones/metabolismo , Opsinas/genética , Opsinas/metabolismo , Filogenia , Células Fotorreceptoras Retinianas Cones , Opsinas de Bastonetes/genética , Opsinas de Bastonetes/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35197287

RESUMO

Rhodopsin and cone opsins are essential for light detection in vertebrate rods and cones, respectively. It is well established that rhodopsin is required for rod phototransduction, outer segment disk morphogenesis, and rod viability. However, the roles of cone opsins are less well understood. In this study, we adopted a loss-of-function approach to investigate the physiological roles of cone opsins in mice. We showed that cones lacking cone opsins do not form normal outer segments due to the lack of disk morphogenesis. Surprisingly, cone opsin-deficient cones survive for at least 12 mo, which is in stark contrast to the rapid rod degeneration observed in rhodopsin-deficient mice, suggesting that cone opsins are dispensable for cone viability. Although the mutant cones do not respond to light directly, they maintain a normal dark current and continue to mediate visual signaling by relaying the rod signal through rod-cone gap junctions. Our work reveals a striking difference between the role of rhodopsin and cone opsins in photoreceptor viability.


Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/metabolismo , Transdução de Sinais , Animais , Opsinas dos Cones/genética , Eletrorretinografia , Transdução de Sinal Luminoso , Mutação com Perda de Função , Camundongos
12.
FASEB J ; 35(10): e21927, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547123

RESUMO

Cone photoreceptors are responsible for the visual acuity and color vision of the human eye. Red/green cone opsin missense mutations N94K, W177R, P307L, R330Q, and G338E have been identified in subjects with congenital blue cone monochromacy or color-vision deficiency. Studies on disease mechanisms due to these cone opsin mutations have been previously carried out exclusively in vitro, and the reported impairments were not always consistent. Here we expressed these mutants via AAV specifically in vivo in M-opsin knockout mouse cones to investigate their subcellular localization, the pathogenic effects on cone structure, function, and cone viability. We show that these mutations alter the M-opsin structure, function, and localization. N94K and W177R mutants appeared to be misfolded since they localized exclusively in cone inner segments and endoplasmic reticulum. In contrast, P307L, R330Q, and G338E mutants were detected predominately in cone outer segments. Expression of R330Q and G338E, but not P307L opsins, also partially restored expression and correct localization of cone PDE6α' and cone transducin γ and resulted in partial rescue of M-cone-mediated light responses. Expression of W177R and P307L mutants significantly reduced cone viability, whereas N94K, R330Q, and G338E were only modestly toxic. We propose that although the underlying biochemical and cellular defects caused by these mutants are distinct, they all seem to exhibit a dominant phenotype, resembling autosomal dominant retinitis pigmentosa associated with the majority of rhodopsin missense mutations. The understanding of the molecular mechanisms associated with these cone opsin mutants is fundamental to developing targeted therapies for cone dystrophy/dysfunction.


Assuntos
Distrofia de Cones/genética , Opsinas dos Cones/genética , Genes Ligados ao Cromossomo X , Mutação de Sentido Incorreto/genética , Animais , Feminino , Humanos , Masculino , Camundongos , Retinite Pigmentosa/genética , Rodopsina/genética , Opsinas de Bastonetes/genética
13.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34561305

RESUMO

Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling promote the pathology of many human diseases. Loss-of-function variants of the UPR regulator Activating Transcription Factor 6 (ATF6) cause severe congenital vision loss diseases such as achromatopsia by unclear pathomechanisms. To investigate this, we generated retinal organoids from achromatopsia patient induced pluripotent stem cells carrying ATF6 disease variants and from gene-edited ATF6 null hESCs. We found that achromatopsia patient and ATF6 null retinal organoids failed to form cone structures concomitant with loss of cone phototransduction gene expression, while rod photoreceptors developed normally. Adaptive optics retinal imaging of achromatopsia patients carrying ATF6 variants also showed absence of cone inner/outer segment structures but preserved rod structures, mirroring the defect in cone formation observed in our retinal organoids. These results establish that ATF6 is essential for human cone development. Interestingly, we find that a selective small molecule ATF6 signaling agonist restores the transcriptional activity of some ATF6 disease-causing variants and stimulates cone growth and gene expression in patient retinal organoids carrying these variants. These findings support that pharmacologic targeting of the ATF6 pathway can promote human cone development and should be further explored for blinding retinal diseases.


Assuntos
Fator 6 Ativador da Transcrição/genética , Defeitos da Visão Cromática/genética , Retina/citologia , Células Fotorreceptoras Retinianas Cones/patologia , Fator 6 Ativador da Transcrição/agonistas , Fator 6 Ativador da Transcrição/metabolismo , Opsinas dos Cones/genética , Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Organoides , Retina/diagnóstico por imagem , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular/genética
14.
Mol Biol Evol ; 38(12): 5664-5677, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34562090

RESUMO

Vertebrates use cone cells in the retina for color vision and rod cells to see in dim light. Many deep-sea fishes have adapted to their environment to have only rod cells in the retina, while both rod and cone genes are still preserved in their genomes. As deep-sea fish larvae start their lives in the shallow, and only later submerge to the depth, they have to cope with diverse environmental conditions during ontogeny. Using a comparative transcriptomic approach in 20 deep-sea fish species from eight teleost orders, we report on a developmental cone-to-rod switch. While adults mostly rely on rod opsin (RH1) for vision in dim light, larvae almost exclusively express middle-wavelength-sensitive ("green") cone opsins (RH2) in their retinas. The phototransduction cascade genes follow a similar ontogenetic pattern of cone-followed by rod-specific gene expression in most species, except for the pearleye and sabretooth (Aulopiformes), in which the cone cascade remains dominant throughout development, casting doubts on the photoreceptor cell identity. By inspecting the whole genomes of five deep-sea species (four of them sequenced within this study: Idiacanthus fasciola, Chauliodus sloani; Stomiiformes; Coccorella atlantica, and Scopelarchus michaelsarsi; Aulopiformes), we found that they possess one or two copies of the rod RH1 opsin gene, and up to seven copies of the cone RH2 opsin genes in their genomes, while other cone opsin classes have been mostly lost. Our findings hence provide molecular evidence for a limited opsin gene repertoire in deep-sea fishes and a conserved vertebrate pattern whereby cone photoreceptors develop first and rod photoreceptors are added only at later developmental stages.


Assuntos
Visão de Cores , Opsinas dos Cones , Animais , Opsinas dos Cones/genética , Peixes/genética , Peixes/metabolismo , Expressão Gênica , Opsinas/genética , Opsinas/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/genética
15.
Genome Biol Evol ; 13(10)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34375382

RESUMO

Many animals including birds, reptiles, insects, and teleost fishes can see ultraviolet (UV) light (shorter than 400 nm), which has functional importance for foraging and communication. For coral reef fishes, shallow reef environments transmit a broad spectrum of light, rich in UV, driving the evolution of diverse spectral sensitivities. However, the identities and sites of the specific visual genes that underly vision in reef fishes remain elusive and are useful in determining how evolution has tuned vision to suit life on the reef. We investigated the visual systems of 11 anemonefish (Amphiprioninae) species, specifically probing for the molecular pathways that facilitate UV-sensitivity. Searching the genomes of anemonefishes, we identified a total of eight functional opsin genes from all five vertebrate visual opsin subfamilies. We found rare instances of teleost UV-sensitive SWS1 opsin gene duplications that produced two functionally coding paralogs (SWS1α and SWS1ß) and a pseudogene. We also found separate green sensitive RH2A opsin gene duplicates not yet reported in the family Pomacentridae. Transcriptome analysis revealed false clown anemonefish (Amphiprion ocellaris) expressed one rod opsin (RH1) and six cone opsins (SWS1ß, SWS2B, RH2B, RH2A-1, RH2A-2, LWS) in the retina. Fluorescent in situ hybridization highlighted the (co-)expression of SWS1ß with SWS2B in single cones, and either RH2B, RH2A, or RH2A together with LWS in different members of double cone photoreceptors (two single cones fused together). Our study provides the first in-depth characterization of visual opsin genes found in anemonefishes and provides a useful basis for the further study of UV-vision in reef fishes.


Assuntos
Opsinas dos Cones , Opsinas , Animais , Opsinas dos Cones/genética , Evolução Molecular , Hibridização in Situ Fluorescente , Opsinas/genética , Filogenia
16.
J Vis ; 21(7): 15, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34313713

RESUMO

Recently, we reported measurements of heterochromatic flicker photometry (HFP) in 22 young observers, with stimuli that (nominally) modulated only L- and M-cones and were kept at (approximately) a constant multiple of detection threshold. These equiluminance settings were represented as the angle in the (L, M) cone contrast plane, with the greenish peak of the flicker in quadrant II and the reddish peak in quadrant IV; equiluminance settings were reported as the greenish angle. The mean equiluminance angle was 116.3° (an M:L cone contrast ratio of -2 at equiluminance), but individual differences in the settings were substantial, with the variation across individuals almost five times larger than the within-subject precision in the settings. In the present study we sought to determine the degree to which we could account for our observers' HFP settings by plausible variations in the macular pigment optical density (MPOD), the lens pigment optical density (LPOD), the cone photopigment optical densities (PPOD), and serine/alanine polymorphism in L-cone opsin (λmax shift). Most of the range of our measured equiluminance angles could be accounted for by these factors, although the largest two angles (smallest |ΔM/M: ΔL/L| ratio at equiluminance) could not. Individual differences in HFP have sometimes been taken to indicate variations in the ratio of L:M cone number; our results suggest that most of the individual differences in HFP might be equally well ascribed to physiological factors other than cone number. Simple linear models allow predictions of equiluminance angle, cone adapting level, and artifactual S-cone contrast from the values of the four factors considered here.


Assuntos
Opsinas dos Cones , Cristalino , Opsinas dos Cones/genética , Humanos , Fotometria , Células Fotorreceptoras Retinianas Cones
17.
J Hered ; 112(4): 357-366, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33837393

RESUMO

Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behavior. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous. The bluefin killifish is a good model for studying the interaction between environments and visual systems as they are found in both clear springs and tannin-stained swamps. We conducted a genome-wide screening and demonstrated that the bluefin killifish has 9 cone opsins: 1 SWS1 (354 nm), 2 SWS2 (SWS2B: 359 nm, SWS2A: 448 nm), 2 RH2 (RH2-2: 476 nm, RH2-1: 537 nm), and 4 LWS (LWS-1: 569 nm, LWS-2: 524 nm, LWS-3: 569 nm, LWS-R: 560 or 569 nm). These 9 cone opsins were located on 4 scaffolds. One scaffold contained the 2 SWS2 and 3 of the 4 LWS opsins in the same syntenic order as found in other cyprinodontoid fishes. We also compared opsin expression in larval and adult killifish under clear water conditions, which mimic springs. Two of the newly discovered opsins (LWS-2 and LWS-3) were expressed at low levels (<0.2%). Whether these opsins make meaningful contributions to visual perception in other contexts (i.e., swamp conditions) is unclear. In contrast, there was an ontogenetic change from using LWS-R to LWS-1 opsin. Bluefin killifish adults may be slightly more sensitive to longer wavelengths, which might be related to sexual selection and/or foraging preferences.


Assuntos
Opsinas dos Cones , Proteínas de Peixes , Fundulidae , Animais , Opsinas dos Cones/genética , Proteínas de Peixes/genética , Fundulidae/genética , Filogenia , Opsinas de Bastonetes/genética , Análise de Sequência
18.
PLoS One ; 15(10): e0240313, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33048954

RESUMO

To convert external light into internal neural signal, vertebrates rely on a special group of proteins, the visual opsins. Four of the five types of visual opsins-short-wavelength sensitive 1 (Sws1), short-wavelength sensitive 2 (Sws2), medium-wavelength sensitive (Rh2), and long-wavelength sensitive (Lws)-are expressed in cone cells for scotopic vision, with the fifth, rhodopsin (Rh1), being expressed in rod cells for photopic vision. Fish often display differing ontogenetic cone opsin expression profiles, which may be related to dietary and/or habitat ontogenetic shift. The western mosquitofish (Gambusia affinis) is an aggressive invader that has successfully colonized every continent except Antarctica. The strong invasiveness of this species may be linked to its visual acuity since it can inhabit turbid waters better than other fishes. By genome screening and transcriptome analysis, we identify seven cone opsin genes in the western mosquitofish, including one sws1, two sws2, one rh2, and three lws. The predicted maximal absorbance wavelength (λmax) values of the respective proteins are 353 nm for Sws1, 449 nm for Sws2a, 408 nm for Sws2b, 516 nm for Rh2-1, 571 nm for Lws-1, and 519 nm for Lws-3. Retention of an intron in the lws-r transcript likely renders this visual opsin gene non-functional. Our real-time quantitative PCR demonstrates that adult male and female western mosquitofish do not differ in their cone opsin expression profiles, but we do reveal an ontogenetic shift in cone opsin expression. Compared to adults, larvae express proportionally more sws1 and less lws-1, suggesting that the western mosquitofish is more sensitive to shorter wavelengths in the larval stage, but becomes more sensitive to longer wavelengths in adulthood.


Assuntos
Opsinas dos Cones/genética , Ciprinodontiformes/genética , Perfilação da Expressão Gênica/veterinária , Sequenciamento Completo do Genoma/veterinária , Animais , Opsinas dos Cones/metabolismo , Ecossistema , Evolução Molecular , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Espécies Introduzidas , Masculino , Família Multigênica , Filogenia , Reação em Cadeia da Polimerase em Tempo Real
19.
Mol Ecol ; 29(24): 4956-4969, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049090

RESUMO

African cichlid fishes are a prime model for studying speciation mechanisms. Despite the development of extensive genomic resources, it has been difficult to determine which sources of genetic variation are responsible for cichlid phenotypic variation. One of their most variable phenotypes is visual sensitivity, with some of the largest spectral shifts among vertebrates. These shifts arise primarily from differential expression of seven cone opsin genes. By mapping expression quantitative trait loci (eQTL) in intergeneric crosses of Lake Malawi cichlids, we previously identified four causative genetic variants that correspond to indels in the promoters of either key transcription factors or an opsin gene. In this comprehensive study, we show that these indels are the result of the movement of transposable elements (TEs) that correlate with opsin expression variation across the Malawi flock. In tracking the evolutionary history of these particular indels, we found they are endemic to Lake Malawi, suggesting that these TEs are recently active and are segregating within the Malawi cichlid lineage. However, an independent indel has arisen at a similar genomic location in one locus outside of the Malawi flock. The convergence in TE movement suggests these loci are primed for TE insertion and subsequent deletions. Increased TE mobility may be associated with interspecific hybridization, which disrupts mechanisms of TE suppression. This might provide a link between cichlid hybridization and accelerated regulatory variation. Overall, our study suggests that TEs may be an important driver of key regulatory changes, facilitating rapid phenotypic change and possibly speciation in African cichlids.


Assuntos
Ciclídeos , Opsinas dos Cones , Animais , Ciclídeos/genética , Opsinas dos Cones/genética , Elementos de DNA Transponíveis/genética , Malaui , Opsinas/genética , Filogenia
20.
Am J Primatol ; 82(12): e23199, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32990997

RESUMO

Vision is a major sense for Primates and the ability to perceive colors has great importance for the species ecology and behavior. Visual processing begins with the activation of the visual opsins in the retina, and the spectral absorption peaks are highly variable among species. In most Primates, LWS/MWS opsins are responsible for sensitivity to long/middle wavelengths within the visible light spectrum, and SWS1 opsins provide sensitivity to short wavelengths, in the violet region of the spectrum. In this study, we aimed to investigate the genetic variation on the sws1 opsin gene of New World monkeys (NWM) and search for amino acid substitutions that might be associated with the different color vision phenotypes described for a few species. We sequenced the exon 1 of the sws1 opsin gene of seven species from the families Callitrichidae, Cebidae, and Atelidae, and searched for variation at the spectral tuning sites 46, 49, 52, 86, 90, 93, 114, 116, and 118. Among the known spectral tuning sites, only residue 114 was variable. To investigate whether other residues have a functional role in the SWS1 absorption peak, we performed computational modeling of wild-type SWS1 and mutants A50I and A50V, found naturally among the species investigated. Although in silico analysis did not show any visible effect caused by these substitutions, it is possible that interactions of residue 50 with other sites might have some effect in the spectral shifts in the order of ~14 nm, found among the NWM. We also performed phylogenetic reconstruction of the sws1 gene, which partially recovered the species phylogeny. Further studies will be important to uncover the mutations responsible for the phenotypic variability of the SWS1 of NWM, and how spectral tuning may be associated with specific ecological features such as preferred food items and habitat use.


Assuntos
Opsinas dos Cones/genética , Variação Genética , Animais , Filogenia , Platirrinos , Análise de Sequência de DNA/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...